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Agile Leadership Behavior Three:  
Be Incremental 

Deliver (a working solution) frequently, from a couple of weeks to a 
couple of months, with a preference to the shorter timescale. 

Agile Manifesto Principle Three 

In an agile project, transparency of progress is enabled by regular demonstration of 
parts of the working solution, early integration of different parts to make sure they work 
together, and incremental implementation at regular intervals. In the past, software 
projects have been the most obvious candidates for this approach because software 
can be constructed and dismantled quickly (compared to a building or aircraft 
development project, say). The trend now is for a wider set of projects to use agile 
approaches, such as business transformation programs and modular construction 
projects.  

With the right approach, it becomes possible to identify any issues with the design 
before going too far. Then problems found in the previous iteration can be addressed, 
or at least placed onto the product backlog for fixing at an appropriate time without 
holding up the project. As the team plans the next iteration, they are aware of the 
practical feedback from the previous iteration and can avoid making the same mistake 
again. Iterative delivery at short intervals can be very expensive to do on many 
physical engineering or building projects. A waterfall approach to individual stages of a 
project may still be the best way forward (for example building a skyscraper). However, 
iterative delivery is often the key to success on many engineering projects. 

Consider the success of the Apollo program. It succeeded in placing a man on the 
moon in just 8 years by carrying out progressively more challenging missions, one after 
the other. Initially, a waterfall approach was taken on the project.  

A reluctance to change dangerous designs resulted in a disastrous cabin fire on 
the launchpad that tragically killed three on the Apollo 1 mission. That first mission was 
based on a design that was unproven and under tested. From that point onwards, the 
Apollo program became ruthlessly methodical about feeding back lessons learned from 
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each iteration. Feedback from engineering tests was readily incorporated into the 
technology for the rest of the program. Working iteratively and progressively towards 
their goal, on the 11th mission, man landed on the moon. 

Rework is not Wasted Effort 

Agile embraces the concept of improving a solution by re-working a previously 
delivered solution. Rework sounds wasteful, but agile embraces this as the concept of 
refactoring. There is no shame in correcting mistakes, as long as this happens in a 
timely fashion. The idea is to create an initial version so that progress can be made, 
but with a deliberate intent of not addressing all issues in one go. The concept of 
refactoring rests on two important premises. 

First, that there is an expectation that each technical developer should always 
reserve some time in each iteration to tidy up any structural defects he/she finds in 
modules – even if the defect is in an area that is not planned for work in that iteration. 
Every module should be in a better structure at the end of an iteration than at the 
beginning. ‘Tidying up’ the technical solution should take place every time a module is 
changed. In this way, the solution improves and matures with each iteration, rather 
than its internals getting more tangled and difficult to work on.  

Second, where a deliberate decision is made to leave a technical problem 
unresolved, or a structure not as neat and tidy as it should be, this is recognized as a 
technical debt and placed as an outstanding item on the product backlog. In this way, 
known problems are identified and tracked, not ‘brushed under the carpet’. The 
resolution of technical debt can be prioritized and planned into further iterations 
depending on its importance to the stakeholders.i 

Using this concept, refactoring is an expectation and regarded as desirable 
refinement, not regarded as a cost of the failure to deliver perfectly in the first place. 
Refactoring promises that the solution will not degenerate when it is extended and 
modified over time, but will become more polished and elegant, perform better, and be 
more reliable with each iteration. This can also be seen as embedding maintainability 
into the solution life cycle. Refactoring is a way of incorporating practical feedback into 
the overall architecture that has been used so far. 

At a macro level, refactoring may introduce changes to the overall architecture. 
If refactoring is at a micro level, in other words a rework of the internals of a solution, 
the changes in many cases may not even be noticeable by users of the solution, but 
may improve flexibility for the future and reduce maintenance costs. 

Risks exist in this approach, so the team needs to liaise carefully to avoid 
problems. For example, refactoring the internals of a technical solution that is already 
working can introduce bugs – and these bugs may not be detected by the standard 
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tests that were used on the last version. Informal, ad-hoc refactoring can set the whole 
team back if the correction of a bug in one module has an unintended impact on 
another module. It can also be tempting to go beyond the planned scope of refactoring, 
start to dig deeper and attempt a grand rework of the internal design of a technical 
solution. 

Test driven development is an XP technique where every change, no matter how 
small, is tested before the next change is made. This ensures that changes are made 
one step at a time and that if a mistake is made, it is caught immediately, and the 
source of the error becomes easier to pin down. This continual retesting can consume 
a lot of time, and so batteries of pre-agreed test data and automated test tools are 
necessary to ease refactoring. The running of these tests needs to be automated as 
much as possible to encourage continual and consistent retesting. Risks can be 
managed by encouraging co-ordination between team members, and between teams.ii 

Iterative working patterns help achieve consistency. Deviations from standards are 
quickly noticed. Different methods achieve this in different ways. The waterfall 
approach assumes pre-agreement of detailed theoretical standards by ‘quality 
assurance’ teams, and the coercive enforcement of them by independent quality 
inspectors. A very different approach is taken in XP, where quality standards are 
agreed by the team and enforced by a natural norming process when pair 
programming is used. If it is discovered that the quality standards need refinement, the 
team adopts a more refined approach and spreads the word in an organic way – at 
standup meetings and by pair working. This is very effective on smaller projects, but 
once the team grows above a dozen or so people, organic processes need help. The 
DSDM framework provides a role to help this: the Technical Co-coordinator whose 
responsibility is to ensure that parallel development teams on larger projects work in a 
consistent way so that the solution is coherent, and that quality is good. A System 
Architecture Definition (SAD) is drawn up before starting to build the solution. DSDM 
specifically relates this to the IT aspects of design, but there is no reason why the SAD 
should not cover any aspects of required technology – buildings, communications, 
machinery, and so on. And, like any other agile product, leadership is needed to ensure 
that standards stated in the SAD are refined iteratively using practical feedback. The 
SAD should be a ‘just enough’ document, not part of a detailed BDUF. 

Hierarchy of ‘Delivery’ 

A strength of the agile approach is in the way that it creates a spectrum of delivery. At 
the one end of that spectrum is the delivery of a non-working model, or mock-up of just 
one aspect of the solution. At the other end of the spectrum is the full-scale rollout of a 
tranche of the solution for operational use. 
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However, when using a specific agile method one must be careful to understand 
what is meant by ‘delivery’. Agilists tend to use the term ‘delivery’ as a catch-all term – 
anything on this spectrum is often termed ‘delivered’, even if it is just a successful team 
integration test. Defining this spectrum of deliverability is important to provide 
transparency, demonstrate quality and prove control. But it is only the ultimate delivery 
of useful, working product and its operational embedding that enables benefits to be 
realized. 

Agile methods, then, often oversimplify the richness of this spectrum. Government 
cannot just ‘ship a product’ – it is responsible for delivering outcomes, not technology. 
The Scrum method is an example of this oversimplification. It only provides a binary 
definition of delivery: 

♦ Done product – meets a previously jointly agreed definition of done or quality 
acceptance criteria 

♦ Done and potentially releasable product – not just meeting a set of 
acceptance criteria, but also having the potential for immediate use and 
business benefit. 

The scope of the Scrum method is very much constrained to the internal world of a 
technical development team. The planning and execution of the implementation of the 
‘product’ is visualized as merely a matter of ‘release’ or ‘shipping’ the product for 
immediate use: 

“The purpose of each sprint is to deliver Increments of potentially shippable 
functionality that adhere to the Scrum Team’s current Definition of ‘Done.’ 
Development Teams deliver an Increment of product functionality every sprint. This 
Increment is useable, so a Product Owner may choose to immediately release it.” iii 

Some commentators have suggested that because Scrum is most used in situations 
where planning ahead is difficult, it can be forgiven for ignoring release management 
planning and skating over the inherent complexity of implementation. But if we wish to 
use the method on large-scale government environments we must consider the issue 
of the definition of the delivery spectrum further. iv 

DSDM provides a more useful delivery model. It comes from a project framework 
perspective that incorporates the mechanisms involved in rollout of solutions, not just 
their build. In the DSDM framework, iterations target not two, but three levels of 
deliverability: 

♦ Purely Exploration, where the stakeholders’ requirements are explored 
through modeling and specification prototyping 

♦ A mix of Exploration and Engineering, where an interactive development 
takes place to create a working solution which can be demonstrated 
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♦ Deployment, where the working solution is implemented and business benefit 
is realized. 

Keith Richards suggests that this, among other reasons, explains why, in his opinion: 

“Only DSDM can be used ‘as is’ for projects. Scrum and XP are product delivery 
techniques – they have no concept of ‘a project’.” v 

But these methods do, to an extent, oversimplify the planning needed to meet Agile 
Manifesto Principle Three to deliver a mutually recognizable working solution on a 
regular basis. Therefore, it is instructive to examine a more differentiated type of 
hierarchy of delivery. The military defines nine Technology Readiness Levels (TRLs) to 
categorize delivery: vi 

1. Basic – the lowest level of technology readiness where theory awaits 
practical implementation 

2. Technology concept formulated – some basic principles demonstrated, but 
still essentially theoretical 

3. Proof-of-concept – some physical validation of parts of the design 

4. Subsystem/Component validation – laboratory environment integration of 
whole parts of the system 

5. Subsystem/Component validation in a relevant environment – technological 
components tested in a simulated environment 

6. System prototype – relevant demonstration – a simulated operational 
environment demonstration 

7. System prototype – operational demonstration – the demonstration of an 
actual system prototype in an operational environment 

8. System completed – technology qualified through test and demonstration in 
expected conditions 

9. Successful mission operations – application of the technology under mission 
conditions. 

Table	
 1 introduces the delivery-planning concept, which will help government agile 
projects demonstrate mutually agreed regular deliveries. 
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Level 1  Delivery – Specification Prototyping 

Level 1 deliveries are useful to elicit feedback and gain buy-in and the confidence of 
stakeholders – especially at the start of the project. The DSDM framework 
recommends that a feasibility prototype should be used while an outline business case 
is created, but before the feasibility of the project overall is confirmed. This work will by 
nature be limited and should focus on the business issues at hand. The objective is not 
to start building a solution, but to investigate any practical aspects of the solution that 
could impinge upon financial costs/benefits, and to gain confidence before a full-scale 
business case is created. 

Level 2  Delivery – Demonstration of an Emerging 
Solution 

Level 2 deliveries are not intended for use, but give realistic assurance to management 
and stakeholders about critical aspects of the solution: 

♦ Is the solution ‘user friendly’? Is the citizen uptake of the new service that is 
presumed in the business case still realistic? 

♦ Does the solution perform? A set of what are termed ‘non-functional 
requirements’ will need to be developed and tested to ensure that 
performance is adequate. 

♦ Is the internal architecture developable and maintainable? It is difficult to 
ensure that complex solutions will work as intended. 
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Table 1: Proposed Hierarchy of delivery for Agile Projects 

Level Deliverable Description 

1 Specification 
Prototype 

A working model of some aspects of the 
solution. 

2 Emerging 
Solution 

A partially constructed solution that conforms 
to technical standards, but still has functions 
missing required for real-world use. 

3 Shippable A partially constructed solution that could be 
used. 

4 Consumable A partially constructed solution that is ready for 
use. 

5 Piloted An increment of the solution deployed and in 
use in a limited locality, customer segment 
and/or for a limited time 

6 Implemented An increment of the solution that is in wide-
scale rollout/use. 

Level 3  Delivery – Having a ‘Shippable’ Product Ready 

Level 3 delivery is simply the ‘potential’ for delivery. Periodically, a whole solution is 
built and proven to work – in theory. The stakeholders may not be ready to start using 
the solution, and other implementation restrictions may exist. For example, the UK 
Department of Work and Pensions has approximately 10,000 staff working in 
unemployment offices. Changes to the computer systems must be carefully made in 
conjunction with staff training, and it is not thought practical to make wholesale 
changes to processes on a regular basis. Level 3 delivery has the following 
advantages: 

♦ Further feedback can be gathered from stakeholders on the requirements and 
their priority 

♦ Confidence in the progress of the team is increased 

♦ The technical infrastructure of the solution can be proven end-to-end, thus 
reducing the problems of integration of many different components. 

However, the delivery of a solution by the development team at Level 3 does not guard 
against future problems such as: 

♦ Whether the solution can be easily implemented and used for full-scale 
operations 
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♦ Whether the preparation and training planned for users of the technology is 
adequate 

♦ Whether the user acceptance tests are adequate and have the coverage 
required for real-world use. 

Level 4  Delivery – Having a ‘Consumable’ Product 
Ready 

This delivery level requires user acceptance of the solution, and the delivery 
mechanisms tested. The delivery is not just ‘shippable’ from the point of view of the 
developers, but also ‘consumable’ from the point of view of the stakeholders.  

Setting up delivery mechanisms to make implementation smooth requires 
activities that Carl Kessler calls ‘meta-tasks’ – in other words additional planning and 
development that is necessary not to build a solution, but to build the processes 
required so that the solution can be implemented.  

Dry runs of the product on real-life data may take place to show that the new 
technical solution is usable. Where business rules are unchanged, parallel running can 
help identify any errors in the running of the new solution.vii 

Level 4 delivery incorporates Kessler’s concept of ‘consumability’: a product needs 
to be more than just ‘shippable’, but also ‘consumable’. He advises a three-step 
process to ensure this: 

♦ Identify ‘consumability meta-tasks’: those activities that need to be carried out 
to smooth the path to a successful use of the solution 

♦ Treat consumability capabilities like any other solution capability: 
implementation and use needs to be formally tested 

♦ Set up measures for ‘consumability’ and continually improve the solution in 
this respect.  viii 

Level 5  Delivery – Piloting the Solution 

This level requires pilot running of the solution. The UK Green Book states that: 

“(One benefit of a pilot is that it should) acquire more information about risks affecting 
a project through (and allow) steps to be taken to mitigate either the adverse 
consequences of bad outcomes, or increase the benefits of good outcomes.” ix  

The GAO has recently audited pilot projects as diverse as tax collection at the Internal 
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Revenue Service (IRS) and implementation of improved emergency planning at the 
Federal Emergency Management Agency (FEMA), and has developed criteria for 
successful planning for pilot projects. These are: 

♦ Well-defined, clear, and measurable objectives 

♦ Criteria for determining pilot-program performance 

♦ A method for the determination of appropriate pilot size and a strategy for 
comparing the pilot results with other efforts 

♦ Plans for data collection and analysis to track the program’s performance and 
evaluate the final results of the project. x 

Of course, usefulness of pilots goes beyond providing risk management and providing 
technical feedback to the solution developers. Pilot implementation of a solution can 
engender transparency because significant stakeholders will be involved in checking 
that the new way of working really does bring business benefits. Plans for the best 
approach for rollout of a solution and its speed will be informed by its pilot usage. 

Level 6  Delivery – Widespread Phased Rollout 

Level 6 is real-world delivery, free of the constraints of the theoretical testing of levels 1 
to 4,  and the limitations of piloting. The costs and benefits of wide-scale rollout and 
usage can be measured, and the business case tracked. Level 6 delivery should be 
incremental. An example of an incremental implementation approach was that taken by 
the US Department of Veterans Affairs (VA), where since 2009 projects are required to 
have processes to build and deliver incremental functionality every 6 months. A ‘three 
strikes and you’re out’ policy repeated failure to deliver functionality as scheduled will 
result in a project being paused – or even terminated.xi The avoidance of a big-bang 
implementation gives opportunity for early identification of project problems. Carefully 
used it can guard against the ‘scope creep’ that can often occur on projects where new 
features and requirements slowly are added to an overlarge requirements catalogue. 

Conclusions 

Delivery of a partially working solution provides transparency on the progress of a 
project – especially if an agile approach is taken which delivers incrementally, and in 
very short iterations. This will allow for incremental improvement of the solution by 
refactoring the design and architecture. 

You may notice that Agile Manifesto Principle One requires “continuous delivery”, 
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whereas Principle 3 refers to “short iterations”. One should not be too literal in 
comparing these principles. Principle 1 reflects the ideas behind lean development 
techniques discussed in Part 1. Lean development is almost indistinguishable from 
continuous improvement approaches used in running normal day-to-day operations.xii 
Kanban is a lean technique that involves displaying status cards on walls to illustrate 
the planning of outstanding work and progress against schedule. It is simply the 
Japanese word for “visual information”. The idea is that as soon as something 
changes, whether it be a new issue that is identified, or an existing task that is re-
prioritized, the cards are changed on the wall, and everybody nearby can see the 
change immediately.  

When scaling up agile techniques for large-scale government projects a decision 
must be made as to what ‘continuous’ delivery means, and that requires two factors to 
be agreed for each iteration. First, the criteria for acceptable delivery. Second, the 
length of time to be taken. Near continuous delivery by very short iterations is most 
suitable where operations can respond nimbly to change. Longer iterations are more 
suitable where the nature of operations require periodic releases at longer intervals, or 
where the build times for the technology are measured in months, rather than days. 
The important thing is to do this with eyes wide open, and Agile Leadership Behavior 
Two requires a presumption towards a shorter length, rather than longer wherever 
practicable. 

VA has required incremental implementation since 2009. Their ‘three strikes and 
you’re out’ policy ensures that project delivery happens regularly. If more than two 
incremental deliveries are missed, then the project is stopped and considered for major 
replanning of approach or cancellation. 

Agile methods, such as DSDM and Scrum, recognize that ‘delivery’ does not 
always imply actual usage. The creation, testing, and acceptance of increments of 
work results in a type of delivery. It is objective and auditable. But it is not always 
practical to put every changed piece of software live right now. Therefore there is a risk 
of a lack of nuance over what ‘delivery’ means, and (especially in Scrum) what the 
development team’s responsibility for implementation are.  

Implementation is, for most government projects, much more than just ‘shipping 
the product’. For this reason (and others which I will explore later) some agile experts 
argue that DSDM should be used as a ‘wrapper’ around delivery techniques such as 
Scrum and XP which are focused more at team level than corporate level. A useful 
planning concept is for the development team to target a ‘hierarchy of delivery’ so that 
the type of delivery from each increment of work is clear and expectations are set with 
stakeholders, especially with those tasked with training and implementation of the 
solution with end-users. 
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i {Fowler 1999 #187} 
ii {Fowler 1999 #187: Gamma, Eric in foreword} 
iii {Schwaber July 2011 #118: 15} 
iv {Dybaa 2008 #93: 3} 
v {Richards 2010 #329} 
vi {Levin 2003 #341: Enclosure II, Table 2} 
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